Mass Transport, Momentum Transport and Fluidization in a 2D Bubbling Fluidized Bed

Alexander G. Mychkovsky and Steven L. Ceccio
University of Michigan
Dept of Mechanical Engineering

Deepak Rangarajan and Jennifer S. Curtis
University of Florida
Dept of Chemical Engineering

Overview

- Background
- Laser Doppler Velocimetry (LDV) Measurement Technique
- Single Phase Gas Jet in Empty Bed
- Gas Jets in Bubbling Bed
- Effect of Emulsion Fluidization Level on Jet Dynamics
- Turbulence Measurements
- Modeling Effort
- Conclusions

Background

Jets in Fluidized Beds

- High speed gas jets are injected into a bed emulsion, rapidly entraining and mixing bed particles and interstitial gas
- Jet dynamics are critical to the efficiency and design of the system
- Quantitative non-intrusive measurements of the mass and momentum transport in the jet plume are needed for characterization and modeling
 - Requires knowledge of the particulate and gas phase velocity profiles
 - Not widely reported in the literature

Our 2D Fluidized Bed

 $V_{fl}/V_{mf}=1.15$

• 838 μm SMD HDPE micropellets

Quartz viewing windows

(102 mm x 153 mm x 5mm thick)

Acrylic walls

(457 mm wide x 12.7 mm gap)

Velocity profile scans at

y = 60, 70, 100, 130 mm

Vertical Gas Jet (orifice flush with distributor surface)

$$D_j = 9.2 \text{ mm}, V_j = 92 \text{ m/s}$$

LDV Measurement Technique

LDV in Two Phase Gas-Particle flow

- Particle speed
 - ~ frequency of scattered light
- Simultaneously measure bed particle (~1,000 μm) and jet gas (~1 μm tracers) velocity profiles (2 component)
 - Jet gas is seeded by rapidly condensing moisture in the air to produce ice crystals
 (T_j = -5°C, ρ_j = 1.32 kg/m³)
 - Burst intensity subranging to distinguish the two phase measurements

Intensity Subranging

- Bed particles $(d_p >> \delta_f)$ produce larger amplitude Doppler bursts than gas tracer ice crystals $(d_p \sim \delta_f)$
 - 99% of bed particle bursts200 mV
 - 99% of ice crystal bursts500 mV
- Coincidence
 - Gas tracers: 0 μs
 - Bed Particles: 10 μs

Velocity Histogram Separation

Single Phase Gas Jet

Empty Bed Transverse Velocity Profiles

Single phase gas jet plume velocity profiles are self-similar with a Gaussian bellcurve shape

Centerline axial velocity decay and velocity profile width expansion are consistent with a free 2D turbulent jet

Mass and Momentum Transport Calculations

The 3D nature of flow must be accounted for

$$v_{g,avg}^{2} = \frac{1}{w} \int_{w} [v(z)]^{2} dz \approx C_{2} v_{g,peak}^{2} \qquad C_{2} = 0.55$$

$$v_{g,avg} = \frac{1}{w} \int_{w} v(z) dz \approx C_{1} v_{g,peak} \qquad C_{1} = 0.7$$

 Self-similar velocity profiles enable transport values to be calculated from velocity centerline and half-point values.

Axial mass transport

$$\dot{m}_g = C_1 \rho_g w \int_{-b}^{b} v_g dx = 2.09 C_1 \rho_g w (v_{g,m} x_{g,1/2})$$

Axial momentum transport

$$\dot{J}_g = C_2 \rho_g w \int_{-b}^{b} v_g^2 dx = 1.5 C_2 \rho_g w \left(v_{g,m}^2 x_{g,1/2} \right)$$

Gas Jets in a Bubbling Bed

Bubbling Bed Vertical Jet Velocity Profiles

- Jet gas and bed particle velocities obtained simultaneously
 - 838µm HDPE particles
 - □ Fluidization: $V_{fl} = 33.4 \text{ cm/s} (V_{fl}/V_{mf} = 1.15)$

Transverse Velocity Profile Self-Similarity

Gas Velocity Profiles

838 μ m HDPE, $V_j = 92$ m/s, $V_{fl} = 33.4$ cm/s

Particulate Velocity Profiles

838 μ m HDPE, $V_j = 92$ m/s, $V_{fl} = 33.4$ cm/s

- The gas and particulate phase velocity profiles appear self-similar, thus they can be fully characterized by
 - Centerline velocity: v_m(y)
 - \Box Velocity profile width: $x_{1/2}(y)$

Centerline Velocity and Profile Width

- The presence of bed particles significantly reduces the gas phase velocity
- Velocity profile width for the gas phase in the bubbling and empty bed is very similar

Volumetric Void Fraction (ε)

 Indirectly determined from a momentum balance using the measured velocity profiles

$$\dot{J}_{j} = \dot{J}_{g} + \dot{J}_{p}$$

$$\dot{J}_{p} = (1 - \varepsilon)C_{2}\rho_{p}w \int_{-b}^{b} v_{p}^{2}dx$$

$$\dot{J}_{g} = \varepsilon C_{2}\rho_{g}w \int_{-b}^{b} v_{g}^{2}dx$$

$$\varepsilon = \frac{\dot{J}_{j} - wC_{2}\int_{-b}^{b} \rho_{p}v_{p}^{2}dx}{wC_{2}\left[\int_{-b}^{b} \rho_{g}v_{g}^{2}dx - \int_{-b}^{b} \rho_{p}v_{p}^{2}dx\right]}$$

Void Fraction > 95% in the dilute jet plume

838
$$\mu$$
m HDPE, $V_j = 92$ m/s, $V_{fl} = 33.4$ cm/s 0.98 0.98 0.96

Mass Flow and Momentum Transfer

- Bed particles are entrained into the jet plume while the gas phase mass flow remains nearly constant for this fluidization level
- Momentum is rapidly transferred from the jet gas to the entrained particles

Effect of Emulsion Fluidization State

Effect of Fluidization on Jet Dynamics

- Fluidization level varied from spouted bed to 50% beyond minimum fluidization
- 838 μm HDPE micropellets
- $V_i = 92 \text{ m/s}$

$$V_{fl}/V_{mf} = 0$$

$$V_{fl}/V_{mf} = 1$$

$$V_{fl}/V_{mf} = 1.5$$

Effect of Fluidization on Velocity Profiles

Increasing the fluidization velocity decreases the maximum centerline velocity and widens the velocity profiles for both phases

Effect of Fluidization on Void Fraction

Void fraction in the jet plume increases with emulsion fluidization

Effect of Fluidization on Mass Transport

- As the fluidization rate increases, the gas phase mass flow increases
 - Below minimum fluidization, jet gas diffuses into the emulsion to locally fluidize the particles
 - Above minimum fluidization, interstitial gas and bubbles in the emulsion are entrained into the jet plume

Gas Phase Mass Flow 838 μ m HDPE, $V_i = 92$ m/s

- $\mathbf{V}_{fl}/V_{mf} = 0$
- $V_{fl}/V_{mf} = 0.7$
- $\mathbf{x} V_{fl} V_{mf} = 1$
- $V_{fl}/V_{mf} = 1.15$
- $V_{fl}/V_{mf} = 1.3$
- $V_{fl}/V_{mf} = 1.5$

Effect of Fluidization on Mass Transport

 Particulate phase mass flow in the plume decreases with increasing fluidization due to competition with the interstitial gas entrainment

Effect of Fluidization on Momentum Transport

- As the fluidization rate increases, the gas phase momentum increases due to increased interstitial gas entrainment
- Particulate phase momentum decreases with increasing fluidization

$$\dot{\boldsymbol{J}}_{j} = \dot{\boldsymbol{J}}_{g} + \dot{\boldsymbol{J}}_{p}$$

Turbulence Measurements

Importance

- The jet plume of a bubbling bed is a region of turbulent mixing
- Experimental measurements have been restricted to plume size, plume shape, gas mean velocity, solids mean velocity and solids concentration
- Turbulence data will help in developing fundamentally rigorous models to describe momentum transport in bubbling beds
- Fluctuating velocity data will be valuable in validating gas-solid turbulence equations used in Eulerian framework

Experimental Procedure

$$v' = \sqrt{\sum \frac{(v - v)^2}{N}}$$

- The same LDV technique used for mean velocities is employed to measure fluctuating velocities in each phase
- To be conservative, only measurements with Doppler burst counts greater than 1000 are considered

Single Phase Turbulence

- Data lies in the non-self similar or potential core region of turbulence
- Shows good agreement with literature
- Negligible influence of bounding walls seen

D.R. Miller, and E.W. Comings, "Static pressure distribution in the free turbulent jet," J. Fluid Mech. (3): 1, 1957.

E. Gutmark, and I. Wygnanski, "The planar turbulent jet,," J. Fluid Mech. (73): 465, 1976.

D. Rangarajan, and J. S. Curtis, "Effect of spanwise width on rectangular jets with sidewalls," J. Fluids. Eng. T. ASME, submitted 2011.

Bubbling Bed Fluctuating Velocity Profiles

- Particle fluctuations are ~50% greater than gas fluctuations
- Profile shapes for both phases similar to single phase turbulence
- Deviation in shape at higher fluidization state due to plume boundary fluttering

Effect of Fluidization on Turbulence

- There is an increase in gas turbulence in Spouted Bed compared to Empty Bed
- Effect of increasing distributor velocity is to initially decrease and then increase fluctuations in both phases
- Particle and gas fluctuations complement each other

Relationship with mean quantities

Coupling via Fluctuating Velocity

$$St = \frac{t_p}{t_g} = \frac{\rho_p d_p^2 V_j}{18\mu_g D_j} \sim 21,000$$

$$Re_p = \frac{(v_g - v_p)d_p \rho_g}{\mu_g} \sim 1500 - 3000$$

- High St suggests particle motion is unlikely to be affected by gas-phase turbulence
- High Re_p suggests gas turbulence enhancement due to vortex shedding caused by particles

Modeling Effort

Modeling Framework

- Eulerian two-fluid modeling
- Solved using MFIX code
- Inclusion of friction and turbulence interaction terms from existing works

$$\varepsilon \rho_{g} \left[\frac{\partial V_{g}}{\partial t} + V_{g} \cdot \nabla V_{g} \right] = -\varepsilon \nabla P - \nabla \cdot \varepsilon \tau_{g} + \varepsilon \rho_{g} \underline{g} - \underline{F_{D}}$$

$$v \rho_{s} \left[\frac{\partial V_{s}}{\partial t} + V_{s} \cdot \nabla V_{s} \right] = -v \nabla P + \underline{F_{D}} + v \rho_{s} \underline{g} - \nabla \cdot \underline{\sigma}_{s}$$

Dilute region dominated by turbulent and collisional/kinetic stresses

Dense region dominated by frictional stress

Use of Experimental Data for Validation

Experimental data	Compare with	Validate
Minimum fluidization velocity	Minimum fluidization velocity	Frictional pressure
Plume size and shape from photograph	Solids fraction contour	Frictional viscosity
Gas and particle mean axial velocity	Gas and solids axial velocity	Overall performance of model
Gas phase axial fluctuating velocity	Turbulent kinetic energy assuming same anisotropy as planar single phase jet	Gas-particle turbulence interaction
Particle axial fluctuating velocity	Granular temperature assuming isotropy	Gas-particle turbulence interaction

Spouted Bed: Srivastava-Sundaresan friction and no turbulence

Particle mean velocity decay

Gas turbulence

Granular temperature

Srivastava, A., and Sundaresan, S., "Analysis of a frictional-kinetic model for gas-particle flow," Powder Technol., 129 (2003) 72

Conclusions

- A procedure has been developed to simultaneously measure gas and particulate phase velocities based on LDV burst intensity and coincidence subranging
- Mass and momentum transport of the two phases inside the jet plume of a bubbling bed was calculated from the measured velocity profiles
- Maintaining constant gas jet inlet conditions changes in mean and fluctuating quantities were investigated for varying emulsion fluidization states
- The use of experimental data to validate the Eulerian two-fluid model is presently being studied